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ABSTRACT

General models describing the interactions between a pair of piezoceramic patches and
elastic substructures consisting of a cylindrical shell, plate and beam are presented. In each
case, the manner in which the patch loads enter both the strong and weak forms of the time-
dependent structural equations of motion is described. Through force and moment balancing,
these loads are then determined in terms of material properties of the patch and substructure
(thickness, elastic properties, Poisson ratios), the geometry of the patch placement, and the
voltages into the patches. In the case of the shell, the coupling between bending and in-
plane deformations, which is due to the curvature, is retained. These models are sufficiently
general to allow for potentially different patch voltages which implies that they can be suit-
ably employed when using piezoceramic patches for controlling system dynamics when both
extensional and bending vibrations are present.
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1 Introduction

The use of piezoceramic elements as sensors and actuators has burgeoned in the last several
years in applications ranging from the measurement and damping of vibrations in large flexi-
ble structures to the control of noise in structural acoustics settings. Their utility as sensors
derives from the property that when the element is subjected to a mechanical strain. a voltage
proportional to the strain is produced. Conversely, they also exhibit the phenomenon that
an applied polarization voltage across the unconstrained element produces in-plane mechan-
ical strains in the material. Because of these properties, piezoceramic elements have found
increasing success both as sensors such as strain gauges and accelerometers and as distributed
actuators. Their success as actuators is augmented by the fact that they can be used to di-
rectly control local vibrations without applying rigid body forces and torques, and due to their
distributed nature, they are less prone to spillover effects in many control strategies. More-
over, the piezoceramic elements or patches are inexpensive, lightweight, space efficient and
can be easily shaped or bonded to a variety of surfaces. Hence a large number of patches can
be used to sense and control without significantly changing the mass or dyvnamic properties
of the system.

In order to obtain optimal results with the piezoceramic elements or patches in sensing
and control applications, it is necessary to have accurate models of the mechanies of induced
strain actuation. This modeling also provides knowledge of the physical imitations of the
piezoceramic patches as actuators in various settings. Detailed models have been developed
for piezoceramic patch interaction with Euler-Bernoulli beams {2, 3. 1, 5. 10] and thin plates
[6, 12]. Because many of the initial applications of piezoceramic elements were in settings
involving the sensing and control of bending deformations (these vibrations are dominant in
many low frequency vibration and noise control problems). most of these models concentrate
on patch configurations which excite pure bending motion of the substructure with more
limited discussions of pure extensional excitation. It was not until [10] that a model was
developed which provided for simultaneous excitation of both bending and extensional de-
formations in an Euler-Bernoulli beam. One motivation for developing such a model is the
observation that in complex coupled systems, in-plane vibrations with small displacements can
have large in-planc cnergy levels due to the property that beams are much stiffer in extension
than in bending. This in-plane energy can then couple into flexural vibrations at structural
discontinuities such as joints, thus necessitating the control of both bending and extensional
vibrations in such structures. As determined by Fuller et al [8] through experimental work.
simultancons reductions in both flexural and extensional deformations in a beam can be ob-
tained through the use of asymmetric pairs of piczoceramic actuators and sensors in adaptive
control schemes, and the analytic work in [10] was a first step toward developing a model
which could be used in further such control settings. In that work, force and moment balanc-
ing were used to determine expressions for the moments and strains induced by the activation
of a single piezoceramic patch which was bonded to an Euler-Bernoulli beam.




In addition to beams and plates, thin elastic shells are often used to describe various
structural components as well as when modeling the coupling between structural vibrations
and their radiating or receiving acoustic fields. For example. the transmission of sound through
an airplane fuselage due to low frequency, high amplitude exterior acoustic fields can be
modeled by a vibrating thin cylindrical shell which is coupled to an interior acoustic pressure
field [9]. In order to optimally control the interior noise via piczoceramic patch actuation.
one first needs to accurately model the interactions between the patches and the shell. This
raises modeling issues which differ from those encountered in the heam aud plate analyses in
that the in-plane and bending vibrations are coupled in the evlindrical shell due to curvature
effects.

Analytical models describing piezoceramic pateh/cvlindrical shell interactions have primar-
ily been based on layered shell theory [11. 19] or the use of flat plate piczoceramic coupling
results when determining the resulting loading on the shell [15]. In the first case it is assumed
that the piezoceramic material makes up an entire laver of the elastic structure and hence

flat plate theory, it is assumed that the patch dimensions are small in comparison with the
cylinder radius. Curvature propertics are then neglected when modeling the coupling between
the patch and shell and determining the loading due to activation of the patch.

In this work. we present general models for the interactions between a pair of piczoceramic
patches and elastic substructures consisting of a heam, plate or thin shell. In the case of a
shell, the patches are assumed to be curved and the coupling between beading and in-plane
deformations, which is due to the curvature, is retained. The techniques used to develop the
shell/patch interaction model are also used to develop general models describing the moments
and forces which are generated by the activation of piezoceramic patches which have been
bonded to a flat plate or beam. These models differ from those in {6, 12] and [2. 3, 4, 5] in
that they allow for different voltages into the individual patches thus admitting the analysis
of simultancous excitations of both bending and extensional components. In the case of the
beam, the model is slightly more general than that in [10] since it is derived for two active
patches. Hence it is appropriate for models in which both patches actuate with potentially
different voltages into the patches. In the case of one actnating patch. however, the model
reduces to that in [10]. From a control perspective. these models are important since they
provide for greater latitnde in designing control strategies involving the use of piezoceramic
elements to affect both the bending and extensional properties of a structure.

As a prelude to the development of the patch interaction models, equations of motion for
the underlying substructures are presented with special attention paid to the contributions
due to externally applied moments and forces since this is where the interactions between
the patches and substructure oceur. The analysis leading up to the structural equations also
motivates many of the techniques which are used to develop the pateh interaction models.

To this end. a synopsis of the derivation of the strong form of the time-dependent Donnell-
Mushtari thin shell equations from Newtonian principles (force and moment balancing) is
presented in Section 2. A complete treatment of this topic can be found in [13. [1, 16, 7.
I8] and the included diseussion is limited to summarizing that material which is needed for
developing the shell/pateh interaction model as presented in the following section. The choice
of the Donnell-Mushtari model is for case of presentation and as noted at various points in the
discussion, the pateh/shell interaction model can be ecasily extended to higher order models




as warranted by the physical situation.

An inherent disadvantage of the strong form for the equilibrium equations when the ex-
ternal loads are generated by piezoceramic elements is the resulting presence of the first and
second derivatives of the Heaviside function due to the finite support of the patches. As a
result of this as well as other identification and approximation issues. we then develop the
weak form of the time-dependent Donuell-Mushtari shell equations. This is done in more
detail since this development is less readily available in the the literature. This formulation is
advantageous in many approximation schemes, admits the identification of discontinuous ma-
terial parameters, and eliminates the problem of differentiating the Heaviside function since
the derivatives are transferred onto the test functions.

The second section concludes with a synopsis of the strong and weak forms of the Kirchhoff
plate and Euler-Bernoulli beam equations. As in the shell discussion, particular emphasis is
placed on the contributions of externally applied forces and moments since this is where the
coupling between the substructure and piezoceramic patches occurs.

The patch contributions to the cylindrical shell equations are developed in Section 3. In
order to determine the loading due to patch moments and forces, it is useful to first express
them in terms of the normal strains and changes in curvature of the middle surface of the
cylindrical shell. To do this, the stress-strain relations in the patch and shell are developed
which then allows the moment and force resultants for the patch to be formulated in terms of
midsurface shell properties. The unknown normal strains and midsurface changes in curvature,
and hence the patch moments and forces, are then determined by moment and force balancing.
In this manner, the loading due to activation of the patches can be expressed in terms of
material properties of the patches and shell (thickness, elastic properties. and Poisson ratios).
the radius of curvature of the shell, and the voltage being applied to the patches.

In Section 4, the techniques of the third section are tailored to composite structures consist-
ing of piezoceramic patches which are bonded to plates and beams. The resulting plate/patch
interaction model is shown to be equivalent to that of [12] in the special case when pure
bending motion is excited (the model in [12] was derived by isolating the interface stress for
the system and treating it as the unknown to be determined). Due to its generality however,
our model also allows for more complex interactions involving both bending and extensional
components since the voltages into the individual patches can differ. As discussed earlier. the
beam/patch interaction model reduces to the model in [10] in the case of one actuatin : patch
but is slightly more general in that it also admits models in which two patches arc used for
actuating with potentially different voltages into the patches. As with the shells, this provides
structure/patch interaction models which can be used in various structural and structural
acoustics control settings.




2 Underlying Shell, Plate and Beam Equations

Throughout this discussion, we consider a thin circular evlindrical shell of radius £2. thickness A
and having the axial coordinate « as shown in Figure 1. The variable = measures the distance
of a point on the shell from the corresponding point on the middle surface (= 0) along the

normal to the middle surface.

Figure 1. The Cvlindrical Thin Shell.

Strain-Displacement Relations

By combining Love's shell assumptions with the strain-displacement equations of three
dimensional elasticity theory, one obtains the strain relations

Cr =&, 4 2K,

o = T———= (g + 2Ky)

wt=(1455) 7]

where ¢, and ¢4 are normal strains at an arbitrary point within the cylindrical shell and 4,4 is
the shear strain. Here 2, g and ¢,9 are the normal and shear strains in the middle surface and
#po kg and 7 are the midsurface changes in curvature and midsurface twist (see [14]. page 8).

Note that within the framework of infinitesimal elasticity, the equations (2.1) are exact
and in the Byrne-Fhigge-Lur'ye shell theory, these represent the exact form of the kinematic
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equations. In the Donnell-Mushtari theory, one neglects the underlined terms =/ R with respect
to unity thus leaving
€r = €5+ K,

€g = g+ =Ky (2.2)

710:51'0+:(I+2R)T-

In terms of the axial, tangential and radial displacements u, v and w, respectively. the
expressions for the midsurface strains and changes in curvature for the cylindrical shell are

Ju ) Pw
== o T TR
ldv  w I 0*w 1 dv .
““Ro TR T mor  Ras (23]
dv 1 du 2 0*w 2 Jv
“=9:TRoe 7T Roroe T Rox

As before, the underlined terms are retained in the Byrne, Fligge and Lur've theory
and are discarded in the Dounnell-Mushtari theory. We point out that the equations (2.1)
and (2.3) differ from those arising in the theory of flat plates both in the presence of the
length differential Rdf as well as in the retention of the strain terms <, and g4 (only bending
contributions are considered in the corresponding models of the transverse vibrations of a flat
plate).

Stress-Strain Relations

To determine the constitutive properties of the shell, it is assumed that the shell material is
elastic and isotropic. Hooke’s law in conjunction with the assumption that the transverse shear
stresses 0. and oy, as well as the normal strain component e, are small in comparison with
other stresses and strains (these conditions are part of Love’s third and fourth assumptions)
then yields

E
Or = ; (Cr + veg)
1 — 2
= 1_’2(€9+l/€r) (2.1)
Org = Og, = E
rg = 9:—2(1+V)%0

where o, and oy are normal stresses and 0,9 and oy, are tangential shear stresses. The
constants £ and v are the Young’s modulus and Poisson ratio for the shell.

ot




Force and Moment Resultants

By integrating the stresses over the face of a fundamental element, the force resultants can
be expressed as

Nz e | 9= z
Ny | = / 08 <l + —) dz
Qr Ik Orz E_
and
Ne njz | 96
No, =/ | o | dz.
Q9 ~h/2 of: P

Similarly, the moment resultants are

M h2 o z
ol = i 1 + =) zdz
[Mro] /_h/z[O’xe]( +ﬂ)
1\49 _ /h/'l o od
Mﬁr - -h/2 | O6r e

The orientation of the various forces and moments are shown in Figure 2. We point out that
the transverse shear stresses o,. and oy, are used when obtaining the force resultants Q. and
Qo even though they are omitted in the constitutive relations. This is one of the contradictions
which arises in the classical shell theory.

and

Figure 2. Force and Moment Resultants for the Clylindrical Shell.
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In the Donnell-Mushtari theory, the underlined terms =/ R are neglected in comparison to
unity, and the integrals are determined accordingly to y .d

N Eh du N 1 dv N w M EhR3 0*w + v (')'Zw]
= —— | — )| —— — 1. = — —_—
T (1 =w?) |0 "\Ro9 " R ' : 12(1 —v?) [ 022~ R? 06? |
Eh lov w ou Eh3 1 9*w *w
LU LT L LA BT,
No="0m [Rao TR +V0x] - Moo=y [R2 70? +U<‘)ﬂ] (25)
Eh dv 1 du ER3 0w
Nepg=Noy = ———|+—+ 5+ , Mpe =My, = — — .
T T (0 ) [3;r * Ré)()] 0= Mo 12R(I + v) 0rd0

Similar expressions are obtained in the higher order theories.

Strong Form of the Donnell-Mushtari Shell Equations

The equations of the dynamic equilibrium of the element are obtained by balancing the
internal force and moment resultants as shown in Figure 2 with any externally applied forces
and moments. Let

(7 = (}rir + 60;‘0 + qAnin
and
m = Mgly + Myl

denote the surface forces and moments due to an external field which is acting on the middle
surface. Hence ¢ and m have units of force and moment per unit area, respectively.
Considering equilibrium of the forces in the r, 8 and = directions yields

ION, ONy,

Ror t g THRE=0.
INy N,o . -
. , = 2.6
Y +Ra.p+Q"+R"" 0. (2.6)
0Q, 0Qe A
Moe * o ~ Mot Rin =0

respectively. In the Donnell-Mushtari theory, the transverse shearing force Qg is considered to
be negligible in the second equation of (2.6) and is subsequently neglected when determining
the final equilibrium equations. Similarly, with 0 as a reference origin, the balancing of
moments with respect to 0, x and : yields

oM, OM,, .
o + 50 RQ. + Rig =0,
OMs | OM,g : .
W_*_R P —RQ()‘*RT?IJ._O . (2.7)
Mg,
Nr@ - N&r - F:: =0 )

-1




respectively. By referring to the integral definitions of N9, Np, and My, it can be seen that
the third expression in (2.7) is identically satisfied due to the symmetry of the stress tensor.

Time enters the equilibrium equdtiuns through the inertial terms; hence for time-dependent
problems, the force g, is replaced by —ph 22 5+ where p is the density in mass per unit volume
of the shell. Similar substitutions are made for g and ¢,,. By combining (2.6) and (2.7), one
arrives at the time-dependent Donnell-Mushtari equilibrinm equations for a thin cylindrical
shell with radius of curvature R and thickness h

)2?1 () N ()1\/9,-

F - R—= —~ = Rq,
Rph PYE R P 20 Rq

021' an() R ;VIQ

h— — — = RéG 2.8

kol — g o e (28)
% d* M, 1 %My d*M ()mg am,

Roh S _ R _ = _9 No = Ri,

hr 5 R " Yava0 T it R g

We note that the representation of the external loads as surface moments and forces is
convenient when deriving the strong form of the equations of motion. However. in many
applications where it is necessary to actually determine expressions for these loads or when
nsing the weak form of the equations, it is advantageous to r(‘pwsvnt these loads in terms
of line forces and moments. To accomplish this, let \II, A\Ig, N, and \g denote the external
resultants acting on the edge of an infinitesimal element which have the same orientation as
the internal resultants depicted in Figure 2 (with units of moment and force per unit length
of middle surface). Force and moment balancing can be used to write the area moments and
in-plane forces in terms of these line moments and forces, thus vielding

X IN, i l 9N

Gr = —— 4o = — 0% n
().rA R ()({ (2.9)

. 1 OM, R aM,

My = ——— , Mg = ——

R 90 T or
We point out that the first e\(plmﬁon in (2.9) can be obtained from (2.6) simply by
replacing N, by N, and (lvletmg in the first expression of (2.6). Similar analysis leads to

the other expressions in (2.9). Fhv nso of these line moments and forces in (2.8) is equivalent
to including the external resultants directly when determining the equations of moment and
force equilibrium for an infinitesimal shell element as done in (2.6) and (2.7).
The substitution of the internal moments and forces in (2.5) and the external resultants
from (2.9) then vields
Il P v 1 —vd*u 1+v % v dw (l -3 o ’\’

CEgrr T 9rr 2R 902 2R drd0  Rdr  Eh O
I % | —vd*e L v 1 +v 0% I dw _(l — ) 1 0N, (2.10)
("} ot 2 drt RPOOT 2R Jrd) R*O0 Eh o R 90 B
I 9% L oI L ()v+ 1 +/ o (1—v?)[. L 92N, OM,
rriaene e - T -0 . W= ——"—""I\Gn — =55 5 — T 5
Forr Tror T o T T " R O
S




where again, u, v and w are the axial, tangential and radial displacements, respectively [14].

The constant Cy, given by
L
Es 2
(L=|———
t [ps(l - ’/f)]

is the phase speed of axial waves in the cylinder wall. The external line forces N, and N,
and moments M and Mg have units of force and moment per unit length of middle surface.
respectively, and are generated in our problem by the activation of the piezoceramic patches.
The load ¢, is left as a surface force since this is the form that it usually takes in problems
involving the excitation of a shell through normal forces (an example of a normal force in this
form is the pressure exerted on the shell due to an exterior or interior acoustic field).

We again emphasize that the resultant expressions in (2.9) (and hence the system (2.10))
were derived for an infinitesimal element; hence certain modifications must be made when
considering the global form of the resultants and equations (as is necessary when the resultants
are generated by a piezoceramic patch). In certain cases (e.g., for certain types of moments
and forces), the system (2.10) agrees with the strong form of the global shell equations. In
general, however, this is not true, and one must exercise extreme care in determining the form
of the global representations for the moments and forces.

Weak Form of the Donnell-Mushtari Cylindrical Shell Equations

In order to find the weak form of the shell equations, the kinetic and strain energies of
the shell are needed. By combining the Kirchhoff shell hypothesis with the strain results
from classical elasticity theory, it follows that the strain energy stored in the shell during
deformation is given by

hj2 p2m gt

/ / / (0z€x + 0g€s + 026726) (1 + 2/ R) Rdrdfd:
rj2Jo  Jo

where the stains and stresses are given in (2.1) and (2.4), respectively. Substitution and

integration (with (14 z/R)~! replaced by its geometric series expansion and neglecting powers

of = in the integrand which are greater than two) yields

T

hZ 7.'2 )
+15 (K2 + ko) —2(1 — ) Kekg = — +ﬁ(5rﬁr_€0ﬁe)

(1 =v)ez el (1-vw)ed,
- 74+ L drd
5 RT+R2+ 5 R2 Rdrdd .

With the change of variables s = &/ R, the total strain energy can be written as

1 2r p€/R Eh
= 5/0 [) m [[DM + leF‘L] dcda




where k& = h2/(12R?), Ipay is the integrand corresponding to the Donnell-Mushtari theory
and Iy denotes the terms which are retained to vield the Byrne. Fliigge and Lur've strain
energy. These two components are given by

/ _ (')u+()l'+ : 21 Ju ()(‘+ .\ ] i)z'+(')11 ¢
m= A\ gs e te) TG\ G “) t\as T

5 32 J*w 0% w
+ A(Vie) =2t —w -
- () -0 5 (()~()0> j

1
anrg

00 s

+ l(l ) du\’ _)(')u d%w +9u ()zu' n
— —_— I/ — —— ~.——— JESSEE——— l
2 90 D O oz T

[ 9y dvdte dv P 3( | o\’ L du
milL = 20— — V) (1 —v)| = — )=
piL D% 9500 AN Y00 9500

For simplicity of presentation. a weak form of the shell equations will be developed using
the Donnell-Mushtari strain expression: a corresponding set of equations can be <lerived in a
similar manner in the Byrne. Flugge and Lur'ye case.

The kinetic energy of the shell is given by

2r pffR ?u\’ LA 2w\’ Y
— “dsdb .
/ /0 ( ) +<m2> +<m'~’ Hods

Throughout this development. it is assumed that the shell satisfies shear diaphragm bound-

arv conditions at o = 0. /; that is. it is assumed that
r=w=N,=0M,=0

at the ends. This is done merely to demonstrate the equivalence between the weak form which
follows ana the strong form already discussed; oth=r boundary conditions can be treated with
similar arguments. [t should be noted that the conditions v = w = 0 at the ends are essential
boundary conditions and heunce must be enforeed on the chosen state space.

For an arbitrary time interval [fy.£,]. consider the action integral

131

Alii] = / (T = U)dt (2.11)
to

where @ = [u v w] is considered in the space Vo= [IHQ) x HHQ) x HZ(Q). Here 2 denotes

the shell and the subseript b denotes the set of functions satisfving the essential boundary

couditions. One then considers variations of the form

w(t.r.0.r) m)o(r.f.r)
=i+ = | o(fr0.0) | 42| Do 0. )
Il’(/. 1. 0. .l') 1[3( { )(.?;;(l'. () .I')

Here = o] and ¢ = [0y, 0y, 03] are choseu so that
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i) Aty ) eV
1i.) @tours o) = ity ens) -

Note that this enforces 7 € [H*(0,T)]", 7(to) = (1) and deV.

Hamilton’s principle states that the motion of the shell must give a stationary value to the
action integral when compared to variations in the motion, thus leading to the requirement
that for all &,

=0
e=0

With the definition (2.11) for the action integral, Hamilton’s principle leads to the condi:ion

J ty p27 pf/R du ()7“ O ()7’2 D ()7“ |
” - f ' by + | R dsdbdt
L]f=“ /‘0/0 /U /”[)1 PRI TR )t”] e

Je Al
/n/zr/r/h’ Eh (()u Jv N “) <7 don 4 o, ) )
! _— 1y — 2 ()
to 1 - 1/Z ds 08 h Js 12 00 13003

()v()ol Jdu ()()2+ du
96 05 s o8 TR

l .
(;5'/ [ N E(I)]

0=

)+II

1 ((’)v N (')u.) <1 Jdo, s i)o,)
T2 \0s T 08) \ P os T 0

Y. 3 Y Y
0% w 0oy 9% w 903

. 2z B 2 Doy — — 3 5
H{""‘v oo~ ")["" 967 92 BYT e

0tw 0os
1s .
-21 598 gde dsdfdi

Note that this must hold for all arbitrary intervals {to,#,] and all admissible perturbations.
Temporal integration by parts in the first integral in conjunction with the underlyving condition

(- u)[m w92




that 7(to) = 7(t1) then yields the co.pled syster

n of equations

2r r8/R p(1 —v )()2 ) Ju Ov 0¢,
/ o [ { S Taala (ds+e§5+w>7}?
0¢y Odvddy 1 [Ov  OJu\ 0y _
+(1 —») [w—d—g TP (E + 0—9—) 50 ] }ded()df 0
2r /R l — v )6217 9 du v d¢2
/0 o [ { —E oaf - <as Tt ) 20
Juddy, 1 [0v 09,
+(1 — ) [5?8_0_:2_(5§+00) o‘c] }dqd()dt—O
ar pOf/R p(1 - 1/2) 0*w 2 Ju Ov du
[ { R A (5}*55“”) Fot (1 =0
. A *w 0%*¢p3  0*w 0%gs *w %9,
L 2 24 _y — S =0,
k{V wVid; — (1 —v) [002 a2 552 502 590 9590 dsdfdt =0

The weak form of the equations of motion for the unforced shell is thus

ar (/R [ R? 924 du dv 0¢, ov oo _
I / {C"’dﬂ +(a +”ao+’“’> as+§“ )(d<+d>09 dsdf =0
ir pt/R A R? 9%y Ju Ov 0(1)2 ov  Ou dq& _
L {02 I +(”5§ 26 > 5+ 3l - )(E d&) gs | 4 =0
/Zw /f’/R R? 02w Bu N dv 5
ot Ve Tty
32w (324)3 6210 62¢3 62w 82¢3
Vo2, o2, . —
t {V Vs =1 ”)[ o6 B2 + 0w o~ “ds0n9s06) ) |1V =0

for all ¢ € V. Again, the constant Cp = [

cylinder wall.
In terms of the moment and force resultar

the weak form is

p(1

i)

1/2 | : .
/ is the phase speed of axial waves in the

1ts (see (2.5)) and the original axial variable «,

2r ot *u 0¢1 0,
[ vdf =
/ /O{Rp 5 #1 RN 4 Nop St dadd = 0
o 992 99, oo
/0 / {Rph }t2¢,+N9 oo+ AN }drdO—O (2.12)
2 w 0% by 0% 0?93
20l 0% _ Lm : rdf =0,
/ /O{f,n 7+ Noa = RM, 220 = My = = 2Myp =22 h drdd = 0
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The derivation thus far has been for the unforced shell. To include the contributions of
applied external forces and moments which do nonconservative work on the shell, one can ap-
peal to an extended form of Hamilton’s principle or more formally include these contributions
directly in the system (2.12). Both techniques yield identical final equations and for ease of
presentation, we will take the latter approach.

The inclusion of the applied line forces and moments NI, Ng and /\;II, Mg and the surface
load ¢, in the system then yields

i I I ¢ _
/ / {Rphdf2¢1+RN S+ Nos ot — RN (h}d d6 =0

ar d¢2 d9, 99, , 0
/ / {Rphdt2¢z+Ng L RN Nf,%-}d,cde_o

(2.13)

2 J*w . 02¢3 ()2(253 02¢3

/ / {RPh BT ¢>3+/\0¢3 RM,— Fr ——Mo 502 — 2] bod 90
02¢3 072(253

for all a; € V as the weak form of the Donnell-Mushtari equations of motion for the forced
shell.

With the assumption of sufficient smoothness, the weak solution in this form is consistent
with the strong solution in (2.8). The vanishing of several of the boundary terms which arise
during integration by parts is a result of the choice V = HJ}(Q) x H}(Q) x HZ(Q) for the
function space since the state variables and test functions are required to satisfy the essential
boundary conditions

v=w=20

at xr = 0,¢.

We point out that in the weak form (2. 13), one is not required to differentiate the applied
force and moment resultants N, Ng, M, and M, as is required in the strong form (2.10). This
proves to be very beneficial when these terms are generated by finite piezoceramic patches as
discussed in the next section.

Plate Equations

Consider a thin rectangular plate whose edges lie along the coordinate lines x = 0,( and
y = 0,a. We assume that the plate subjected to both longitudinal and transverse loading
via the surface forces and moments ¢, qs, ¢ and ., my. With u,v and w denoting the
displacements in the x,y and normal directions, respectively, the strong form of the Kirchhoff
plate equations is given by
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; I M, IO*M, O*M,, O*M,, + om, L& ()my
! - - - - = ({n T
PR3 T Toer T oyt dxzdy  dydr T oy T or

where the moment and force resultants are

~

N Eh  (0u N v M ER? w N 0*w

Ny = ; . S \ Iy = — [

=2 \gr dy 12(1 — »2) \ Ox? : Jdy?

N Eh Jv N du \ ER? J*w N D%

/. = _— —_ Vi = — /

Yol -2 \ Oy wr T 12(1 — v2) \ 0y? Y or?
Eh ov  Ou ER?  O*w

Ney=Npp=5——|>>+5] . My=M.=- s
Y v 2(1 + v) ((’).r + ()y) M, v 12(1 + v) 0xdy

The first two equations in (2.14) describe the longitudinal movement of the plate while the
third equation describes the transverse motion of the plate.

To find the weak form of the equations, the vector @ = [u,v,w] containing the displace-
ments in the x, y and normal directions is considered in the space V = H} (Q) x H}(Q) x H}(Q)
where © denotes the plate and the subscript b denotes the set of functions satisfving essential
boundary conditions for a specific problem. By using analysis similar to that just described
for cylindrical shells, the weak form of the equations of motion for the plate can be found to

be
nopf 0%u ()(f)] ()(])1 ~ ()d)l v
fo /0 {P"Wf" Noar F Mgy — Ny p ety =0
d%» Dby . by o 0y
(2.15)
II’ )2¢'3 (')2(/)'; (}2(/)} 02(7)3
} ! BV LR V Ak R Vi)
/ / {” o T Moy — M~ Mg, ~ M o,
)2¢ )24)
~Gudy + Mo 4 M, 5 ;}drdy =0

for all (Z = [b1. b2, #3] € V. As in the case of the thin shell, the external line forces and
moments N,, Ny, M, and My are related in an infinitesimal sense to the corresponding area
forces and moments ¢, ,, ™, and m, appearing in the strong form of the equations by the
relations

IN, . IN,
-y =~

A

qr = —

dr dy .
. . (2.16)
aM, R M,
m, = —— , m, = ——
dy ‘ ar




If the solution has sufficient smoothness, integration by parts can be used to show that the
weak solution is consistent with the strong solution in (2.14).

Beam Equations

The motion of an undamped thin beam of length ¢ and width 1 can be determined from
the dynamics of thin plate theory by considering only the vibrations in the r-direction along
with the usual transverse vibrations (in the = direction). From (2.14) this yields the strong
form of the Euler-Bernoulli beam equations

(')2u JdN,
d/ or or
('?210 J*M, ., Omy
"o T o Mt ;

-

=
by

where 3
= ER
dr

Eh3 J%w d*w

M, = = —_—

I« 12 dl -k or?

Note that { = ~*/12 is the moment of inertia for a beam of width 1

A corresponding weak or variational form of the equations can be determined by choosing
V = HN Q) x HE(R) for the space of trial functions where §) denotes the beam and the subscript
b again denotes the set of functions which must satisfy the essential boundary conditions.
Through either an energy derivation such as that given for the thin shell, or simply integration
by parts, one arrives at the variational form

t)zu (')d), ~ 01 B .
/{ ()1‘1¢1 S - Ny— e dr =0 forall ¢, € H ()

()zw ()2% il 0% ¢4 5
/ { TJf—z(ﬁg ()1‘2 (111¢'3 (),1‘2 d.l? =0 fOI all (.4)\3 € Hh(Q)

of the beam equations. We point out that in this form. one is not required to differentiate the
external force or moment resultants, NV, and A, which proves to be very useful when these
terms are generated by the activation of finite piezoceramic patches.

3 Patch Contributions to the Shell Equations

For a thin cylindrical shell, the strong and weak forms of the equations of motion are given
by (2.8) and (2 13), respectively. In the case of the weak form, it is seen that the loads
can be written in terms of the line forces and moments N, A\/g. A, and Ay and the normal
siurface load @,, while the strong form contains surface loads and the derivatives of surface




moments. In the problem under consideration, these quantities result from the activation of
piezoceramic patches of thickness T which are assumed to be perfectly bonded to a cyvlindrical
shell of thickness h with midsurface radius R (see Figure 3). As shown in Figure 4, the patches
are assumed to be situated so that their edges are parallel to lines of constant r and 6. Because
the patches generate no shear strains, the exterior load ¢, is taken to be ¢, = 0. If the weak
form (2.13) 1s used, the external line moments and forces are simply

AAIJ' = (Alr)Pe . ‘/{10 = (MG)P‘
Nr = (Nr)Pe ) Ng = (/VO)P‘“

where (M;)pe, (Mp)pe. (Nz)pe and (Np),e are the respective moments and in-plane forces which
are generated by the patches. The subscript pe is used to denote patch properties and to

(3.1)

help differentiate them from shell properties which have no subscript. When it is necessary
to differentiate between the two patches, the outer will be denoted with a subscript pe; with
a subscript pe; being used to denote the inner patch.

However, if one is using the strong form (2.8) of the equations of motion with piezoceramic
actuators, the surface moments and forces to be used in (2.8) are given by

. LO(Mg),e . O(M,)p

T TR 00 C T T (3.2)
. , N AN, e ) , N 1 O(Ng)pe -
qr = —51,2(1)‘31‘2(9)*(—(3‘%’“ s Qo = —51,2(«”)51,2(9)5—(5;—)& .

For a patch with uniform thickness and bounding values ry, x;, 6, and 0,. the presence of the
indicator function
1 yor < (x4 1y)/2
Sia(r)=¢ 0 ,  xr=(r;+uay)/2 (3.3)
—1 y > (x4 ay)/2
derives from the fact that the forces generated by the patch in the r-direction are antisym-
metric (equal in magnitude but opposite in sign) about the line ¥ = (r1 + x3)/2. The same
holds true for the forces in the #-direction with S| 5(#) being defined in an analogous manner
to S1a(r) in (3.3).

We point out that the differences between the external surface force expressions in (2.9)
and (3.2) are due to the fact that the former were derived for an infinitesimal element whereas
the latter are global expressions which preserve the overall signs of the forces generated by the
patches as well as reflect the discontinuities due to changes in sign. These differences result
from the property that the sense of the forces is highly dependent on the specified location
of the axis origin on the neutral surface. Hence the direction of forces throughout the patch
differs in some locations from those observed in the infinitesimal element thus necessitating
the inclusion of the indicator functions in (3.2).

Unlike the forces, the action of the moments is specified with respect to a fixed point on
the neutral surface (the point 0 for the element in Figure 2 or a point on the left edge of the
shell in Figure 1). As long as the orientation of the infinitesimal element and full shell with
patches are the same, the line moments derived for the infinitesimal element will be consistent
with those of the full structure. Thus the expressions for the general infinitesimal moments
in (2.9) need no modifications when describing the surface moments generated by the patches
as given in (3.2).
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Figure 3. Strain Distribution for the Composite Structure.

Figure 4. Piezoceramic Patch Placement.

In order to determine (M:),e, (Mg)pe, (Nz)pe and (Ng)pe and hence the loads on the shell,
it is useful to write them in terms of the normal strains €,,ey and midsurface changes in
curvature kg, kg of the middle surface (z = 0) of the cylindrical shell. That is, we want to
express the patch moments and forces in terms of the reference surface characteristics of the
cylindrical shell.

We emphasize that due to the presence and activating nature of the patches when a voltage
is applied, the normal strains and changes in curvature are no longer given by the expressions in
(2.3) which were derived for a homogeneous thin cylindrical shell. At this point, ¢,, 4, . and
kg are considered to be unknown and are determined by formulating stress-strain relations in
the patch and shell followed by the balancing of moments and forces in the combined structure.
In this manner, expressions for these midsurface characteristics (and hence the resulting patch
moments and forces) can be found in terms of the material properties of the shell and patch,
the radius of curvature of the shell, and the voltages being applied to the patches.
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Stress-Strain Relations in the Patch

From (2.1), the infinitesimally exact strain relationships for a cylindrical shell with mid-
surface radius R are given by

Cr = (51‘ + :Nr)

] i » (3.1)
T3 /R S0t =Fe)

where e, and €4 are the normal strains at an arbitrary point on the cyvlindrical shell. [f
the patches and cylindrical shell are thin in comparison with the radius of curvature of the
shell. then it is reasonable to assume that the relationship (3.4) is maintained throughont the
combined thickness h + 2T as shown in Figure 3 (see also [12]). Hence we will take

(er)pe = (g7 + 284)

1 N (3.5)
Tk +:/R(60+~h0)

where (e;), and (eg),e are the normal strains at an arbitrary point on the patch. Note that
this assumption implies that the strains at the interface are continuous and that the centers
for the radii of curvature for the shell and patch are concurrent. As seen in (3.4) and (3.5).
the tangential strain distribution in the shell and patch is in general nonlinear in z (see also
Figure 3).

We point out that the model at this point differs from the flat plate piezoceramic coupling
model [15] both in the presence of the term z/R in the tangential strain expression of (3.5)
and in the fact that the model retains the coupling between the normal midsnrface strains and
the changes in curvature (this is analogous to simultaneously considering both longitudinal
and transverse vibrations in a plate). Although the ratio z/R is neglected when deriving
the Donnell-Mushtari model (see (2.2)), we retain it here so that curvature effects are fully
included in the coupling between the patch and shell. The retention of this term also ensures
that the patch interaction model can be directly applied to higher order shell models without
necessitating changes to accommodate the greater accuracy.

From the constitutive relations in (2.4), it can be seen that the stress distributions within
the cylindrical shell are

€9 =

s

(60)})6‘ =

E
e — (e + veg)

. (3.6)
o9 = e (co + rveg) .

The stress distribution in the patches will contain contributions from both the free piezo-
ceramic actnator strain and the strain distribution in {3.5). At this point we assume that
when voltage is applied and the patch is activated, in accordance with basic shell theory,
equal strains are induced in the r and @ directions and the radius of curvature is not changed
in either direction. Patches satisfying this assumption could be made, for example. by taking
a portion of a thin-walled tubular piezoceramic element. For the outer patch. the magnitude
of the induced free strains is then taken to be

([31

—V,
T 1

ey = (C)pey = (Co)pe, =

I8




where d3; is a piezoceramic strain constant and V) is the applied voltage. We point out
that when a voltage is applied to a patch with edge coordinates oy, .0, 0 and 6,. the point
(,0) = ((ry + r2)/2, R(0y + 62)/2) will not move whereas the axially svimmetric points on
cither side will move an equal amount in opposite directions. This motivates the use of the
indicator functions at various points throughout the development

Assuming that the two patches have the same Young's modulus, £, . and Poisson’s ratio.
Vpe. the stress distribution in the outer patceh is given by

..
() = e o (14 1))
- I/I)( . —
i (3.7)
(”9)1"1 = ] —‘p;;z (eo + e, — (1 +’/7")(7"1)

p(

with the negative signs resulting from conservation of forces. Similar expressions are nsed for
the indnced free strain and stress distribution in the inner patch. By comparing (3.6) and
(3.7), it can be noted that a stress discontinuity occurs at the interface due to the differemt
material properties of the shell and patch.

Moments and Forces in the Patches

By integrating the stresses over the face of a fundamental element. it follows that the
moment and force resultants for the patches can be expressed as

‘, h/‘2+7 J \ —hf2 ~ -

h)24T —h)2
(Mp),., = / (06) e, 2l C (M), = / (00)y,2d=
/2 hf2-T
(3.8)
hf2+T . —h/2 -
(N2, = /W (02)pe, ( H) d= . (N, = /h/ o (1 + F) d:
] hj2+T .
(No)ye, = /W (0) e, d= C (Nodp, = / BRCOE

with units of moment per unit length and force per unit length, respectively. The explicit
dependence of the patch’s moment and force resultants on the shell midsnrface characteristies
€r €0, Ky and wg can be seen by combining (3.5). (3.7) and (3.8) (we again point out that the
midsurface strains ¢,, g4 and curvature changes s, vg are unknown and will be determined by
balancing moments and forces in the combined structure).

Patch Loadings
It. should be noted that throughout this development, edge effects due to the patches have

been ignored and thus the expressions in (3.8) apply to patches covering the full cirenmference
of the shell and having infinite axial length. The equations can be modified for finite patches
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in the following manner. For a patch with bounding values r,, r,, #; and 6, as shown in
Figure 4, the total line moments and forces are

(Me)pe = [(Mo)pe, + (Ma)pe,] [H1 () — Ha(x)] [H1(6) — Hy(0)]

(Mo)pe = [(M)pe, + (M )pe, ] [Hi(x) — Ha(x)] [H1(6) — H(0)]
(3.9)

(Nedpe = (N )per + (Nedpeo] [Hi(2) = Ha(0)] [H1(8) = Ha(8)] 1) S1.2(6)
(No)pe = [(No)per + (Nodpes ] [Hi () = Ha ()] [H1(8) — Hy(0)] S1.2(x) 51 2(6)

where H is the Heaviside function and H;(x) = H(x—x;), 1 = 1,2, with a similar definition in
0. The indicator functions S ;(xz) and 5’,‘2(0) (see (3.3)) again derive from the property that
for homogeneous patches having uniform thickness, opposite but equal strains are generated
about the point (£,8) = ((x; + x2)/2, R(6; + 6,)/2) in the two coordinate directions.

The combination of the expressions (3.8) and (3.9) yields the patch moments and forces
(M:)per (Mg)pe, (N )pe and (Ng)pe in terms of the middle surface characteristics of the the
cylindrical shell. Integrating the expressions in (3.8) is somewhat cumbersome however, and
the procedure can be facilitated by determining the patch moments and forces in terms of the
resultants of the forced shell. To accomplish this, force and moment balancing is employed.

Determination of the Patch Moments and Forces

The application of moment equilibrium about the center of the shell yields the two condi-
tions

M. + (Mr)pt’l + (Mr)pez =0

3.1
Ma + (Mg),e, + (Ma)ye, = 0 (3.10)

where M, and M, are shell moments. Similarly, force equilibrium in the x and @ directions

yields
N; + (Nr)pfl + (Nr)pez =0

3.11
No + (NoYyer + (NoYpey = 0 . (3.11)

Thus the total patch resultants can be expressed as

h/2 =
(My)pe, + MYy, = ~Me =~ [ o, (1 + *) vdz
—h/'I R
hf2
(MO)pel + (MB)pe2 = —Mo = —‘/h/2 ngdz

hj2 ~
Nr e Nz e — 1-:_/ I( :")dz
(Moo + (e = =N == [ (142

hJ2

(NB)PEW + (NO)prg = —Ne = ’_/ 0’9(12
—h/2
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which yields
—ER3

Er
(M, )pr’x (‘Mr)m = m [hr + vk + 72—]

—EhR3
(/Wg)pf‘ + (/Wg)pez N — [h‘o + VK, — ﬁ]

12(1 — v?) R
(3.12)
—FEh h* Kk,
(/V )Pf’l + (‘Nf)pf‘z = 1—__1_2 [Er + veg + ﬁ-ﬁ;]
(]VG)P"! + (NG)Pf’z ~ 1 — 2 |:59 + vep + T‘E—éjl

The two tangential expressions are approximate in the sense that the terms (1 + z/R)™" are
replaced by the truncated geometric series | —z/ R before integration (this is the same strategy
which is used when determining the moment and force resultants in the Byrne-Fligge-Lur’ye
general shell theory). The patch resultants in (3.12) are then used in (3.9) to determine the
total line forces and moments generated by the finite patches. Because these resultants are
functions of the material properties as well as the midsurface characteristics, they can be
easily constructed once £,,¢€p, K, and £y have been determined. This is again accomplished
by moment and force balancing.

Determination of the Midsurface Characteristics

In terms of the stresses, the moment and force equilibrium equations (3.10) and (3.11) can
be written as

hy2 Ay hj24T —h/2 -
e 1] ——)zz re( >~,. / ,e(l —):::O
—/—h/‘zd ( +R + h/2 (72 )pe z+ h/2’I‘U pez +R

h/2 h/24T —h/2
/ opzdz +/ (06)pe, zd= +/ (06)pe,2dz =0

—h/2 hf2-T
(3.13)
and
h/2 AW h/24T 4 ~h/2 -
xl—)z :te( >~/ ze(l ——);:0
/~/1/20<+R +h/z (92)pe + h/2-T (02)pes TR
(3.14)
/hlz /h/2+T —hf2 p 0
—h/2 oodz + (79)pe, ~+/h/2— (0)pesdz =0 .
The integrals appearing in (3.13) and (3.14) are explicitly evaluated in the [1].
After collecting terms, this yields the 4 x 4 linear system
[Asht‘u + A] + Al] €= ept’lf] + Cpezf'l (3]5)
in the unknowns ¢ = (EI,EQ,K,I,NQ)T. The shell contributions in Agpey, the outer patch

contributions in A, and f;, and the inner patch terms in A3 and f, are
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Note that the coeflicients a; , = |,---,4, are of order at most three in h.
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We point out that Ay, AL Ay fi and fy depend on material properties of the patches
and shell (thickness, elastic properties, and Poisson ratios), the radius of enrvature of the
shelll and the voltage being applied to the patches (recall that ¢, = dy; Vi /T where V) is the
applied voltage into the onter pateh with a similar definition for ¢,.,). The above formulation
1solates the contributions due to the individual patches and is nseful if one wants to activate
only one of the patches. If both patches are present. the above formulation can be simplified
to vield the linear system

“‘( = ‘]’f‘l./.l + (]ﬂ-zf'z

where 1
E(l;'l + 2uy) 0 Ey + 2a; Eywv+ 2ao0p.
1
0 — ?\;(El + 2a3) Eyv 4+ 20000 Ey + 21,
A= 1 Eyh?
Iy 27 v + 2T vy — =2 2 0
2t 2t " R( 1 T

1 E2112

I 2T vpe 5y + 2T 0 - 2
i 20+ 2T vpe Ey + R( - +“4)_

Algorithm for Determining the Shell/Patch Interactions

The steps which are necessary for solving for the shell loads due to the activation of the
patches can be summarized as {ollows.

. 7 . .
(1) Set up the 1 x4 system Ae = f and solve for ¢ = (g,,29.K,.59)" which contains the
midsurface strains and changes in curvature.,

(2) Determine the line moments and forces which are generated by the individual patches as
set up in (3.12).

(3) The corresponding combined resultants for finite patches are given by (3.9).

(4) The resultants from (3.9) are directly substituted into (2.13) as the load on the shell if the
weak shell equations are being used (recall that in this case. §, = 0 and N, = (N2 )
Ny = (No)pe M, = (M) e Mo = (My)pe as summarized in (3.1)). For the strong form of
the equations of motion, the derivative expressions in (3.2) are formed and substituted
into (2.8) as the external load.

We point ont that the substitution of the patch moments and forces into the strong form
of the shell equations results in one derivative of the Heaviside and indicator funetions for
the forces and two derivatives of the Heaviside function for the moments whereas no such
differentiation is required in the weak form (the derivatives are transferred onto the test
functions and one simply integrates over the region covered by the patches). This is one
motivation for using the weak form of the shell equations in many applications.
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4 Patch Contributions to Plate and Beam Equations

Analysis similar to that used for the thin cylindrical shells can be used to determine the forces
and moments which are due to the activation of piezoceramic patches which have been bonded
to a flat plate or beam.

Plate/Patch Interactions

The patch interactions with a flat plate can be determined in a manner similar to that
used in the study of the interactions between a thin cylindrical shell and a pair of piezoceramic
patches as discussed in the last section. Direct force and moment balancing leads to the 4 x 4
system listed under Method 1, and this system can then be solved for the unknowns €., &, K,
and x,. By then substituting these values into resultant expressions similar to those in (3.12),
one obtains the forces and moments generated by the patch. This procedure can be simplified
however, by noting that the strains in the x and y directions of a homogeneous flat plate are
equal when equal free strains are generated by the patch (see [6]). Hence two of the variables
can be eliminated which leads to the more easily solved 2 x 2 system given under Method 2.
It should be noted that the two methods yield the same final force and moinent resultants.

Method |

Force and moment balancing similar to that used in the study of the patch/shell interac-
tions yields the system

[Aplate + Al + AZ] €= epelfl + epegf‘l

T . . o
where € = (e,.¢y, Kz, Ky) . The matrices and vectors containing contributions due to the plate
and two patches are

0 0 E] E] 14
0 0 E]I/ E]
Aplate =
E) E'gl/ 0 0
Eav E, 0 0
as a3Vpe @y A2Vpe —dag —Aa3Vpe a a2Vpe
Azl/pe as AVpe a3 —a3Vpe —as A2Vpe a
/'1] = ’ A2 =
T Tvpe as a3Vp, T Tvpe —as3 —Q3Vpe
Tvpe T a3Vpe az | TVpe T —A3Vpe —aj
and
as —das
az —aj3

fi=0+v,) T v Ja= (14 vpe)
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with

_ER(1-2) _ER(1—v2)
T RE, (1 — 1?) 2T B (1 —v?)

1 h 3 | h :
_ o) .— 4 _ 3 Y — — _‘_ 1 _ 2
(12_—24 b(z +7> h , (3 3 4(‘)-}-7) h

5

“1

<

Note that these matrices and vectors are identical to those of (3.15) if one takes R — oo in
the latter expressions. Once £;.¢,, Kk, and &y, have been determined. the moment and force
resuftants can be found in a manner similar to that used for shells.

Method 2

Here we take advantage of the fact that for a homogenecous plate, the strains in the & and y
directions will be equal when generated by equal free (unconstrained) strains from the patch.
Hence we take

€ =€ =€, =€+ K2

as the strain distribution in both the plate and the patch. This yields the stresses

I
= = o, = !
o =0, yE T
in the plate and
EIJ[
(U)Pfl = (0 )pe, = (o'y)pru = 1 — v (e — €pey)
pe
. Epe
(U);'fz = (Ur)pfz = (Uy)pez = 1 — o (€ = €pey)
pe

in the patch. The force and moment resultants for the patches can be found either by inte-
grating the stresses over the patches or by using force and moment balancing to express them
in terms of the resultants for the forced plate. As was done in the shell analysis. we will take
the latter approach since it yields simpler expressions for the external resultants. Force and
moment balancing in conjunction with integration of the forced plate resultants then yields

—ER

(M)pe, + (/Wr)pfz = (/wy)pcl + (My)pe, = m"'

(1.1)
—Eh

! — v

[

(A('f)r’fl + (‘/VI)sz = (N!J)PH + (Ny)I’FZ =

As expected, these relations agree with those in (3.12) for the forced shell with the exception
of the O(1/R) terms in the latter case which are due to the curvature.

The total resultants generated by a pair of patches with edges parallel to lines of constant
r and y can be determined in a manner similar to that used with the shells. For a patch with
bounding values iy, .ry, y; and y,, the total resultants are

(';\Il‘)pl‘ = (‘!"ly}pr = [(/".r)])m + (I\I.r)l)"zl [,I](I‘) - Ill(r)] [III('/) - IIZ(U)]
) (1.2)
(‘V.r)pr = (‘Ny)r'r = [(‘N’I);>('| + ("\;r)prz] [Ill(') - Ilz(l')] [Ill(.'/) - Hz('l)] 5'1‘2(-")5’1.2(!/)

1 ]
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where again, Hi(v) = H(e — ;) , i = 1,2, 81 5(x) denotes the indicator function deseribed in
(3.3), and H;(y) and Sy ,(y) are defined in an analogous manner.

As before, ¢ and & must be found in order to determine the resultants in (4.2). This is
accomplished via moment and force balancing which then yields the system

[Aplnl( + Al + A'Z] € = (‘pf‘lfl + ('pf'zf'l (1;)

T - .
where ¢ = (e,x) . The component matrices and vectors are

0 E] as a, —a1y )
A;)Iutr - s Al = . /12 == o
E) 0 T as 7 —y
and
as f —das
./] = 1 . 2 = .
1 T

The subseripts 1 and 2 again refer to the outer and inner patch contributions. respectively.
and the constants Fy, Fy, a, and a3 are given by
13
£, = ER(1 — v) E, = Eh(l —v,,)
RE, (1 —-v) Ep(l —v)

1 } EY R VSR B B
a; = — 8<7+71) -} :Ill,2'11+;/17“)'+§7"S

ag

h : 2 l ,
H=+T)] ~-h =5T(h+T).

Algorithm for Determining the Plate/Patch Interactions

As in the case of the shell, the steps necessary for determining the plate loads which are
due to the patches can be summarized in a simple algorithm.

(1) Set up and solve the 2x2 system Ae = fin (4.3) where ¢ = (. #)7 contains the midsurface
strain and change in curvature.

(2) Determine the combined resultants for the finite patches through (4.2) in conjunction

with (4.1).

(3) Once determined, the resultants from (4.2) can be substituted directly into the weak form
of the plate equations (2.15) as the load on the system (with ¢, = 0 and N, = (N2 pe
Ny = (N)pey My = (M,)pe, M, = (M,),). If the strong form of the plate equations is
being used, the surface loads can be determined via the expressions

- ' >, () A’rr e - 4 J —() jv al
Gr = —51.2(~T)-“1.2(!/)L(.)7L v Gy = =Sia()Sialy) (('):;)’
7;I.r = ___()( A1_1/)hr y 7;1;; = —()(‘(?)IJ.)M .

a.r

Ay

and these latter valnes can be substitnted into the equilibrium equations (2.14).
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As in the case of the shells, the use of the strong form results in up to two derivatives of the
Heaviside function whereas the use of the weak form alleviates this problem by transferring
the derivatives onto the test functions.

It should be noted that the voltage choice €, = €,, = ¢, causes pure extension
(patch pairs excited “in phase”) in the plate while pure bending occurs with the choice
€pe = —€pe, = €pe, (“out of phase” excitation).

Special Case: €, = — €, = €,

In this case, the constants € and x have the values

2(13

= ——————€pe
E] + 2(l2 l

m
I
)

which leads to the total patch moments

Th(h+T) .
AI_I‘ e — M e — T ’.2 e Hi(x) — Hyf. H — H.
(Modve = M) = i@ 3 oare a9y 2o U (0) = Bl Hh (y) = ()]
where £ i
/i —_ Jpe(l - ”) y = pe

E(l - ”pc) ’ (1 — vpe) '

This line moment expression is equivalent to the relation

- p:(2+f):)
1+ 8p-(3 4 p? + 3p.)

A’[I = A"[y ])2")"(1"? [1{1(1’) - HZ(‘I)] [H](U) - [[Z(U)]

with p; = T/h,h = h/2 which was obtained by Kim and Jones [12] in their development of a
model for the bending interactions between a flat plate and a piezoelectic actuator. In their
work, they consider a patch configuration which excites pure bending in the plate and then
determine the effective patch moment by first isolating the interface stress of the svstem.

Beam/Patch Interactions

The patch contributions to the dynamics of a thin beam can be determined directly from
the plate/patch interaction model if one considers only vibrations in the r-direction along
with the usual transverse vibrations. The system for the beam/patch configuration is then
identical to that found in (4.3) with the constants F; and F, now given by

R E E

El = - \ E2 =h .
12 F,, E,.

Once ¢ and & have been determined, the force and moment resultants for the pateh are
expressed in terms of those of the forced heam and are given by

(M:)pe, + (Mp)pe, = = Elx

(1.1)
(N:)per + (Np)pe, = —Ehe




where I = h?/12 is the moment of inertia for the beam. For patches with bonnding values r,

and ry, the cffective moments and forces are

(M:)pe = [(Mo)pey + (M)pes| [H (0 = 1) = H{a = 23)]
(Nodpe = [(Nidpe, + (Nodpeo ] [H (0 = 1) = H(a — r2)} Sia()

which can then be substituted directly into the weak equations (2.18) as loads on the heam
(with ¢, = 0 and N, = (N7 )pes M, = (M,),e). In order to determine the patch loads for the
strong form of the beam equations, the corresponding surface moments and forces are found
via the relationships

O(Ny)pe

M)
((h)pe = —S],'),(.r)T . (711‘1/)776 = _L_)l_

dr

and these latter values are used in (2.17). We again point out that this results in the need 1o
differentiate the Heaviside function (once for the force and twice for the moment) whereas this
problem is avoided in the weak formulation since the derivatives are transferred onto the test
functions. In fact, the effect o” the Heaviside functions in the latter case is to simply restrict
the integrals to the region covered by the patches.

Special Case: Top Patch Activation

Consider the problem of a beam having only a top activating patch. The svstem in this
case 18

az Ey +a;
E,+T aj

as

85

= Cpe

-

which implies that the midsurface constants are then given by

_ EpT (E, T? + Eh®) (
T ELTU 4 AEE, T?h + 6EE, T?h? + 4B Ep Th + E2ht

B 6EE, Th(T + h) \
T E2TV 4 AEE, T3h + 6EE, T?h? + 4EE, Th + k2t 7

These expressions for ¢ and & are the same as those found by Gibbs and Fuller [10] when they
we re investigating the moments and forces generated by a single patch which was bonded to
a thin beam (these expressions are equivalent to their (7) and (8) once the latter have been
simplified and £ /2 has been substituted for h). The moment and force resultants (M,),,, and
(N:)pe, can then be found by substituting € and & into (4.4) (with (M), = (N,)p, = 0 since
there is no bottom patch). We note that the resultants in this case are equivalent to those in
[10] although the forms and signs differ slightly due to a slight difference in the formulation
of the underlying beamn equatiouns.




5 Conclusion

In this work. general models deseribing the interactions between a pair of piezoceramic patches
and an underlving elastic structure have been presented. While the presentation is for elastic
substructures consisting of a thin eylindrical shell. plate and beam. the techniques disenssed
for determining the moments and forces generated by the patches can be directly extended to
more complex structures and geometries.

In the case of the shell, the patches are assumed to be curved and the coupling between
the in-plane strains and the bending, which is due to the curvature. is retained. By nsing foree
and moment balancing to determine the midsurface strains and changes in curvature of the
combined structure, expressions for the pateh moment and force resultants can be developed.
In this manner, the loading due to an actuating pair of patches can be expressed in terms
of the material properties of the shell and patches (thickness. elastic properties and Poisson
ratios), the radins of curvature of the shell, and the voltage being applied to cach of the
patches. This provides a shell/patch interaction model which retains the curvature effects
as well as admits potentially different voltages into the two patches. We point out that the
general techniques used for determining this cylindrical shell/patch model can also be used
to determine the iteractions between pairs of piezoceramic patches and more general shells
(for example, in the case of a spherical shell, one would retain the curvature effects in hoth
coordinate directions).

The technigues for determining the patch interactions with a cyvlindrical shell were then
nsed to develop general interaction models for patches which are bonded to thin Hlat plates
and beams. As in the shell case, the models are sufficiently general to allow {or potentially
differing pateh voltages which implies that they can be used for controlling svstem dynamics
when both flexural and extensional vibrations are present. To compare with existing analyses.
the plate/pateh interaction model is shown to be equivalent to that of [12] in the special case
when pure bending motion is excited. Also. the beam/patch model is equivalent to that of
[10] when there is one actuating patch. Henece the beam and plate interaction models are
consistent with existing theories in the special cases previously examined while also allowing
for more general structure/pateh interactions which can arise in more complex applications
(for example. coupled systems).

For each of the shelll plate and beam interaction models, the contributions of the patches
are carcfully deseribed in both the strong and weak forms of the time-dependent structural
equations of motion. This provides models which can be nsed in a variety of applications
imcluding numerical simulations. parameter identification, and control schemes. In cach of
these applications, the models are sufficiently general to provide for a variety of approximation
techniques including modal. spectral, spline and finite clement schemes. Finally, the patch
Joads determined by these interaction models can be applied to higher order structural models
i exactly the same manner, and analogous models can be used for multiple patch pairs and
more complex geometries,
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